Online Speed Adaptation Using Supervised Learning for High-Speed, Off-Road Autonomous Driving
نویسندگان
چکیده
The mobile robotics community has traditionally addressed motion planning and navigation in terms of steering decisions. However, selecting the best speed is also important – beyond its relationship to stopping distance and lateral maneuverability. Consider a high-speed (35 mph) autonomous vehicle driving off-road through challenging desert terrain. The vehicle should drive slowly on terrain that poses substantial risk. However, it should not dawdle on safe terrain. In this paper we address one aspect of risk – shock to the vehicle. We present an algorithm for trading-off shock and speed in realtime and without human intervention. The trade-off is optimized using supervised learning to match human driving. The learning process is essential due to the discontinuous and spatially correlated nature of the control problem – classical techniques do not directly apply. We evaluate performance over hundreds of miles of autonomous driving, including performance during the 2005 DARPA Grand Challenge. This approach was the deciding factor in our vehicle’s speed for nearly 20% of the DARPA competition – more than any other constraint except the DARPA-imposed speed limits – and resulted in the fastest finishing time.
منابع مشابه
Learning Deep Neural Network Control Policies for Agile Off-Road Autonomous Driving
We present an end-to-end learning system for agile, off-road autonomous driving using only low-cost on-board sensors. By imitating an optimal controller, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands, the latter of which is essential to successfully drive on varied terrain at high speed. Compared with recent ...
متن کاملDynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits †
A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like r...
متن کاملAgile Off-Road Autonomous Driving Using End-to-End Deep Imitation Learning
We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost on-board sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method...
متن کاملA Self-Supervised Terrain Roughness Estimator for Off-Road Autonomous Driving
Accurate perception is a principal challenge of autonomous off-road driving. Perceptive technologies generally focus on obstacle avoidance. However, at high speed, terrain roughness is also important to control shock the vehicle experiences. The accuracy required to detect rough terrain is significantly greater than that necessary for obstacle avoidance. We present a self-supervised machine lea...
متن کاملSimulated Autonomous Driving on Realistic Road Networks using Deep Reinforcement Learning
Using Deep Reinforcement Learning (DRL) can be a promising approach to handle various tasks in the field of (simulated) autonomous driving. However, recent publications mainly consider learning in unusual driving environments. This paper presents Driving School for Autonomous Agents (DSA2), a software for validating DRL algorithms in more usual driving environments based on artificial and reali...
متن کامل